Possibilities of Electro-Static Generators

By Nikola Tesla*

The knowledge of static electricity dates back to the earliest dawn of civilization but for ages it remained merely an interesting and mystifying phenomenon. Virtually nothing was done towards the development and useful application of the principle. The first distinct stimulus in this direction was given by the discoveries of Franklin and Leyden in the latter part of the 18th Century.

In 1777 Cavallo devised a cylindrical friction machine and from that time on there was a slow but steady evolution of friction and influence machines until the modern Wimshurst, Holtz, Toepler, and other types were produced. Among these machines the one invented by Wommelsdorf 30 years ago was, probably, the most effective. It yielded a current of six-tenths of a milli-ampere and in the present state of science it could be successfully employed for charging large aerial capacities and stepping up its terminal tension of 150,000 to many millions of volts.

Numerous attempts have also been made to generate static electricity by friction of fluids and solid particles but from the earliest records to this day the belt has proved to be the simplest and most convenient means for the purpose. Static electricity from this source gained in importance when evidences accumulated that it was capable of interfering seriously with operations and causing accidents in paper factories, flour mills, and similar establishments. In the early nineties my electrodeless vacuum tubes became extremely popular and were frequently lighted from belts and later Roentgen tubes were operated in the same manner. It is quite easy to improvise such a generator and obtain interesting results under favorable atmospheric conditions.

A remarkable device of this kind, embodying new features, has been recently developed by Dr. R. J. Van de Graaff at the Massachusetts Institute of Technology, and is attracting extraordinary attention. (See page 96, February, 1934, Scientific American. - Ed.) It is hailed as a revolutionary invention with which wonders will be achieved. The technical papers refer to it as a Colossus, a Master Key expected to unlock the secrets of nature. Naturally enough imaginative scribes have built Spanish castles on this foundation. So it comes that even such an ably edited paper as The New York Times informs its readers of a contemplated use of this generator for long distance transmission of power. According to a bona fide report in its issue of December 5, 1933, “the possibilities of the colossal generator have been worked out in theory and it now remains to apply it in practice.” However visionary this scheme may appear it is not absolutely impossible. A wise Macedonian king said: “No wall is so high that a mule loaded with gold could not jump over it.” With unlimited capital and regardless of returns, it might be carried out.

The Van de Graaff generator, shown housed in an aircraft hangar, is discussed by Dr. Tesla in the accompanying article

In view of many articles and editorials written in the same vein, which have amazed the layman and amused the expert, it may not be amiss to examine the merits of this odd contrivance in the light of well demonstrated scientific facts.

But first I want to point out an apparent discrepancy in the descriptive reports and photographs showing the apparatus in action, which is illustrated in the accompanying photographs, and consists of two aluminum spheres 15 feet in diameter supported on insulating columns six feet in diameter. Electricity is supplied to the spheres by paper belts charged from a “sprayer.” With terminals of such dimensions much higher voltages should be obtained. In most of the treatises it is assumed that the surface-density, that is, the quantity of electricity stored per square centimeter of a spherical conductor, can not exceed eight electrostatic units without a breakdown of the surrounding air. As a matter of fact the density can be pushed up to 20 units before power-consuming streamers appear.

This being the case, the limiting voltage of a sphere having a diameter of 15 feet should be 16,964,700 and, consequently, the potential difference between two such oppositely charged spheres, very far apart, is 33,929,400 volts. It may be useful to state, however, that such large spheres placed at a distance of 55 feet between centers, as contemplated, will influence each other to a considerable extent, increasing their capacities. At this distance the increase will be about 16 percent, which should be taken into consideration when estimating the charge.

The desired difference of potential could be obtained with much smaller spheres and it would seem preferable to employ them as they would yield sparks in quicker succession. Some of the photographs under the terminal pressure of 7,000,000 volts are puzzling because the surface-density in this case was only a little over 4 electrostatic units. Furthermore, sparks are shown to pass copiously along the insulating supports. This is a serious difficulty encountered in working with very high tensions but by properly shaping the under side of the sphere and resting it on a support well up in its interior, besides providing a liberal side clearance, the discharges are prevented from following the column and no further trouble is experienced even with the highest potentials. My wireless tower on Long Island, erected in 1902, carried a sphere which had a diameter of 67 1/2 feet and was mounted in this manner. It was to be charged to 30,000,000 volts by a simple device for supplying static electricity and power.

* See page 115.

Page image
TCBA News Volume 5 - Issue 2 - Page 13