Nikola Tesla Articles
Tesla On The Peary North Pole Expedition
To the Editor of the New York Sun:
Everybody must have been pleased to learn that Commodore Peary has finally obtained the financial assistance which will enable him to start without further delay on his important journey. Let us wish the bold navigator the most complete success in his perilous undertaking, in the interest of humanity as well as for his own and his companions’ sake and the gratification of the generous donors who have aided him. But, while voicing these sentiments, let us hope that Peary’s will be the last attempt to reach the pole in this slow, penible and hazardous way.
We have already sufficiently advanced in the knowledge of electricity and its applications to avail ourselves of better means of transportation, enabling us to reach and to explore without difficulty and in a more perfect manner not only the North, but also the South Pole, and any other still unknown regions of the earth’s surface. I refer to the facilities afforded in this respect by the transmission of electrical energy without wires and aerial navigation, which has found in the novel art its ideal solution.
Many of your readers will, no doubt, be under the impression that I am speaking merely of possibilities. As a matter of fact, from the principles involved and the experiments which I have actually performed, not only is the practical success of such distribution of power reduced to a degree of mathematical certitude, but the transmission can be effected with an economy much greater than possible by the present method involving the use of wires.
It would not take long to build a plant for purposes of aerial navigation and geographical research, nor would it cost as much as might be supposed. Its location would be perfectly immaterial. It might be at the Niagara, or at the Victorian Falls in Africa, without any appreciable difference in the power collected in a flying machine or other apparatus.
A popular error, which I have often opportunity to correct, is to believe that the energy of such a plant would dissipate itself in all directions. This is not so, as I have pointed out in my technical publications. Electricity is displaced by the transmitter in all directions, equally through the earth and the air; that is true, but energy is expended only at the place where it is collected and used to perform some work. To illustrate, a plant of 10,000 hp, such as I have been planning, might be running full blast at Niagara, and there might be but one flying machine, of, say, 50 hp operating in some distant place, the location being of absolutely no consequence. In this case 50 hp would be all the power furnished by the plant to the rest of the universe. Although the electrical oscillations would manifest themselves all over the earth, at the surface as well as high in the air, virtually no power would be consumed. My experiments have shown that the entire electrical movement which keeps the whole globe a-tremble can be maintained with but a few horsepower. Apart from the transmitting and receiving apparatus, the only loss incurred is the energy radiated in the form of Hertzian or electro-magnetic waves, which can be reduced to any entirely insignificant quantity.
I appreciate the difficulty which your non-technical readers must experience in comprehending the working of this system. To gain a rough idea, let them imagine the transmitter and the earth to be two elastic bags, one very small and the other immense, both being connected by a tube and filled with some incompressible fluid. A pump is provided for forcing the fluid from one into the other, alternately and in rapid succession. Now, to produce a great movement of the fluid in a bag of such enormous size as the earth would require a pump so large that it would be a greater task to construct it than to build a thousand Egyptian pyramids. But there is a way of accomplishing this with a pump of very small dimensions. The bag connected to the earth is elastic, and when suddenly struck vibrates at a certain rate. The first artifice consists in so designing and adjusting the parts that the natural vibrations of the bag are in synchronism with the strokes of the pump. Under such conditions the bag is set into violent vibrations, and the fluid is made to rush in and out with terrific force. But the immense bag — the earth, is still comparatively undisturbed. Its size, however, does not exempt it from the laws of nature, and just as the small bag, so too the earth, responds to certain impulses. This fact I discovered in 1899.
The second artifice is to so adjust the transmitter that it will furnish these particular impulses. When all is properly done the large bag is thrown into spasms of vibration, and the effects are bewildering. But no power is yet transmitted, and all this colossal movement requires little energy to maintain. It is like an engine running without load.
Next let your readers imagine that at any place where it may be desired to deliver energy a small elastic bag, not unlike the first, is connected to the large one through a tube. The third artifice consists in so proportioning the parts that the attachment will be responsive to the impulse transmitted, this resulting in a great intensification of the vibration of the bag. Still the pump will not furnish power until these vibrations are made to do work of some kind.
To conduce to an understanding of the fourth artifice, that of “individualization,” let your readers follow me a step further, and conceive the flow of energy to any point can be controlled from the place where the pump is located at will, and with equal facility and precision, regardless of distance, and, furthermore, through a device such as the combination lock of a safe, they will then have a crude idea of the processes involved. But only when they realize that all these and many other processes not mentioned, and related to one another like the links of a chain, are completed in a fraction of a second, will your readers be able to appreciate the magical potencies of electrical vibrations and form a conception of the miracles which a skilled electrician can perform by the use of these appliances.
I earnestly hope that in the near future the conditions will be favorable for the construction of a plant such as I have proposed. As soon as this is done it will be possible to adapt electrical motors to flying machines of the type popularized by Santos Dumont. There will be no necessity of carrying a generator or store of motive energy and consequently the machine will be much lighter and smaller. Owing to this and also to the greater power available for propulsion, the speed will be considerably increased. But a few of such machines, properly equipped with photographic and other appliances, will be sufficient to give us in a short time an exact knowledge of the entire earth’s surface. It should be borne in mind, however, that for the ordinary uses of a single person a very small machine of not more than one-quarter horse-power, corresponding to the work of two men, would be amply sufficient so that when the first plant of 10,000 hp is installed, the commodity of aerial flight can be offered to a great many individuals all the world over. I can conceive of no improvement which would be more efficient in the furtherance of civilization than this.
N. TESLA