Various Tesla book cover images

Nikola Tesla Books

Books written by or about Nikola Tesla

one could expect signals to be picked up at distances of a thousand miles or more, even on the Earth's surface. The diary does not mention any measurements at great distances, but in an article(41) he published soon after finishing work at Colorado Springs he states that he observed effects at a distance of about 600 miles.

January 2

In this entry of 21 pages (the longest in the Notes) Tesla describes 11 photographs.

The explanation to Photograph XXII concerning the transmission of power from the excited primary circuit to the “extra coil” via the earth is similar to that he gave in 1893(6). The experiment to which the photograph refers was made with the aim of estimating the power of the oscillator from the thermal effect of the HF current. What Tesla calls the “total energy set in movement” would correspond to the total energy transferred to condenser in the secondary (i.e. the power) if an energy of $!{1 \over 2}$! CV2 is transferred in each half-cycle. It can be shown that the active power dissipated in the circuit is much less than this and is inversely proportional to the Q-factor of the oscillating circuit.

The next few photographs show a movable coil which powers light bulbs by means of the high-frequency power which it picks up. One end of the coil is grounded, the other free or just connected to a short piece of wire. The bulbs are inductively coupled to the resonant coil via the auxiliary secondary. Tesla gives no data about the distance of the resonant coil from the oscillator coil.

Tesla's commentary on photograph XXVIII illustrates that he still retained a lively interest in the problem of electric lighting, even after a period of over ten years. His earlier discovery of the luminescence of the gas and not only the filament with HF currents was here again confirmed(5).

In photograph XXVIII the bulb is connected in series with the terminal capacitive load. In the calculation Tesla does not use the “total energy set in movement” but assumes that 1/2 CV2 of electrostatic energy is consumed in the bulb in each half-cycle. A similar comment applies to photograph XXIV.

Several times Tesla remarks that the principle energy transfer from the oscillating to the receiving coil takes place via the earth. He finds confirmation for this in the experiment described on p. 363 (photograph XXX). He found that the voltage induced in the receiving coil was greatly reduced if the ground connection was broken. It may be that such experiments led him to the conclusion that “transmission” through the earth was a more efficient method of wireless transmission of power than the “inductive method”.

Photograph XXXI is an X-ray picture of a finger. Tesla's comments on this experiment illustrate his interest in this type of radiation, already referred to (see the commentary to 6 June 1899).

January 3

After describing some photographs of the laboratory, in the commentary to photograph XLI Tesla explains some transformations of the streamers. He mentions the splitting of streamers near the floor, splitting and reuniting, the phenomenon of luminous parts on the streamers (which he then refers to as sparks), and the breaking up of sparks into streamers and fireballs. His remarks concerning the genesis of fireballs are particu

431

Glossary

Lowercase tau - an irrational constant defined as the ratio of the circumference of a circle to its radius, equal to the radian measure of a full turn; approximately 6.283185307 (equal to 2π, or twice the value of π).
A natural rubber material obtained from Palaquium trees, native to South-east Asia. Gutta-percha made possible practical submarine telegraph cables because it was both waterproof and resistant to seawater as well as being thermoplastic. Gutta-percha's use as an electrical insulator was first suggested by Michael Faraday.
The Habirshaw Electric Cable Company, founded in 1886 by William M. Habirshaw in New York City, New York.
The Brown & Sharpe (B & S) Gauge, also known as the American Wire Gauge (AWG), is the American standard for making/ordering metal sheet and wire sizes.
A traditional general-purpose dry cell battery. Invented by the French engineer Georges Leclanché in 1866.
Refers to Manitou Springs, a small town just six miles west of Colorado Springs, and during Tesla's time there, producer of world-renown bottled water from its natural springs.
A French mineral water bottler.
Lowercase delta letter - used to denote: A change in the value of a variable in calculus. A functional derivative in functional calculus. An auxiliary function in calculus, used to rigorously define the limit or continuity of a given function.
America's oldest existing independent manufacturer of wire and cable, founded in 1878.
Lowercase lambda letter which, in physics and engineering, normally represents wavelength.
The lowercase omega letter, which represents angular velocity in physics.